Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Toxicol Res (Camb) ; 13(2): tfae052, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567035

RESUMO

Objective: Storke is a leading cause of death and disability affecting million people worldwide, 80% of which is ischemic stroke (IS). Recently, traditional Chinese medicines (TCMs) have received great attentions in treating IS due to their low poisonous effects and high safety. Buyang Huanwu Decoction (BHD), a famous and classical Chinese prescription, has been used for treating stroke-induced disability for centuries. Yet, its underlying mechanism is still in fancy. Methods: We first constructed an IS model by middle cerebral artery occlusion (MCAO). Then, a metabonomics study on serum samples was performed using UHPLC-QTOF/MS, followed by multivariate data analysis including principal components analysis (PCA) and orthogonal partial least squares-discriminate analysis (OPLS-DA). Results: Metabolic profiling of PCA indicated metabolic perturbation caused by MCAO was regulated by BHD back to normal levels, which is in agreement with the neurobehavioral evaluations. In the OPLS-DA, 12 metabolites were screened as potential biomarkers involved in MCAO-induced IS. Three metabolic pathways were recognized as the most relevant pathways, involving one carbon pool by folate, sphingolipid metabolism and inositol phosphate metabolism. BHD significantly reversed the abnormality of 7 metabolites to normal levels. Conclusions: This is the first study to investigate the effect of BHD on IS at the metabolite level and to reveal the underlying mechanisms of BHD, which is complementary to neurobehavioral evaluation. In a broad sense, the current study brings novel and valuable insights to evaluate efficacy of TCMs, to interpret the action mechanisms, and to provide the theoretical basis for further research on the therapeutic mechanisms in clinical practice.

2.
J Ethnopharmacol ; 328: 118126, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38556140

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The repairment of myelin sheaths is crucial for mitigating neurological impairments of intracerebral hemorrhage (ICH). However, the current research on remyelination processes in ICH remains limited. A representative traditional Chinese medicine, Buyang Huanwu decoction (BYHWD), shows a promising therapeutic strategy for ICH treatment. AIM OF THE STUDY: To investigate the pro-remyelination effects of BYHWD on ICH and explore the underlying mechanisms. MATERIALS AND METHODS: The collagenase-induced mice ICH model was created for investigation. BYHWD's protective effects were assessed by behavioral tests and histological staining. Transmission electron microscopy was used for displaying the structure of myelin sheaths. The remyelination and oligodendrocyte differentiation were evaluated by the expressions of myelin proteolipid protein (PLP), myelin basic protein (MBP), MBP/TAU, Olig2/CC1, and PDGFRα/proliferating cell nuclear antigen (PCNA) through RT-qPCR and immunofluorescence. Transcriptomics integrated with disease database analysis and experiments in vivo and in vitro revealed the microRNA-related underlying mechanisms. RESULTS: Here, we reported that BYHWD promoted the neurological function of ICH mice and improved remyelination by increasing PLP, MBP, and TAU, as well as restoring myelin structure. Besides, we showed that BYHWD promoted remyelination by boosting the differentiation of PDGFRα+ oligodendrocyte precursor cells into olig2+/CC1+ oligodendrocytes. Additionally, we demonstrated that the remyelination effects of BYHWD worked by inhibiting G protein-coupled receptor 17 (GPR17). miRNA sequencing integrated with miRNA database prediction screened potential miRNAs targeting GPR17. By applying immunofluorescence, RNA in situ hybridization and dual luciferase reporter gene assay, we confirmed that BYHWD suppressed GPR17 and improved remyelination by increasing miR-760-3p. CONCLUSIONS: BYHWD improves remyelination and neurological function in ICH mice by targeting miR-760-3p to inhibit GPR17. This study may shed light on the orchestration of remyelination mechanisms after ICH, thus providing novel insights for developing innovative prescriptions with brain-protective properties.


Assuntos
Medicamentos de Ervas Chinesas , MicroRNAs , Remielinização , Camundongos , Animais , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Receptores Acoplados a Proteínas G/genética , MicroRNAs/genética , Proteínas do Tecido Nervoso
3.
Int J Neurosci ; : 1-9, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38512025

RESUMO

OBJECTIVE: This study aims to comprehensively verify the efficacy of Buyang Huanwu Decoction in improving cognitive function in patients with diabetes. METHODS: Patients clinically diagnosed with mild cognitive impairment (MCI) assigned to either the placebo group or the Buyang Huanwu Decoction group. After strict screening and exclusions, a total of 156 participants completed the clinical trial, with 76 in the placebo group and 80 in the Buyang Huanwu Decoction group. RESULTS: After treatment, Buyang Huanwu Decoction group showed higher Mini-Mental State Examination and Montreal Cognitive Assessment scores compared to placebo (p < 0.05). Memory and Executive Screening, Boston Naming Test, and Animal Fluency Test scores were also higher in the treatment group (p < 0.05). No significant differences were found in DST and CDT scores (p > 0.05). Trail Making Test scores were lower in the treatment group (p < 0.05). No significant difference was observed between the two groups in terms of complications (p > 0.05). CONCLUSION: Patients receiving Buyang Huanwu Decoction treatment demonstrated improvement in cognitive function, showing positive effects and providing preliminary evidence for the role of Buyang Huanwu Decoction in improving cognitive function in patients with diabetes. This suggests its potential for clinical application and further promotion.

4.
Zhongguo Zhong Yao Za Zhi ; 49(1): 216-223, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403354

RESUMO

This study aims to investigate the effect of Buyang Huanwu Decoction on blood flow recovery and arteriogenesis after hindlimb ischemia in mice via the platelet-derived growth factor(PDGF) signaling pathway. Forty C57BL/6 mice were randomized into model(clean water, 10 mL·kg~(-1)·d~(-1)), beraprost sodium(positive control, 18 µg·kg~(-1)·d~(-1)), and low-, medium-, and high-dose(10, 20, and 40 g·kg~(-1)·d~(-1), respectively) Buyang Huanwu Decoction groups(n=8). The hindlimb ischemia model was established by femoral artery ligation. The mice were administrated with corresponding agents by gavage daily for 14 days after ligation. For laser Doppler perfusion imaging, the mice were anesthetized and measured under a Periscan PSI imager. The density of capillary and arterio-le in the ischemic gastrocnemius was measured using immunofluorescence staining of the frozen tissue sections. Western blot was employed to determine the expression of PDGF subunit B(PDGFB), phosphorylated mitogen extracellular kinase(p-MEK), MEK, phosphorylated extracellular signal-regulated kinase(p-ERK), and ERK. Real-time PCR was employed to determine the mRNA level of PDGFB. The Buyang Huanwu Decoction-containing serum was used to treat the vascular smooth muscle cells(VSMCs) in hypoxia at doses of 10% and 20%. The proliferation and migration of VSMCs was assessed in vitro. The results showed that compared with the model group, beraprost sodium and Buyang Huanwu Decoction enhanced the blood flow recovery, increased the capillary and arteriole density, and up-regulated the protein levels of PDGFB, p-MEK, p-ERK, and mRNA levels of PDGFB, with the medium-dose Buyang Huanwu Decoction demonstrating the most significant effect. The 10% Buyang Huanwu Decoction-containing serum enhanced the proliferation and migration of VSMCs. Our findings demonstrate that Buyang Huanwu Decoction up-regulates PDGFB transcription and activates PDGF signaling pathway to promote arteriogenesis and blood flow recovery in ischemic gastrocnemius.


Assuntos
Medicamentos de Ervas Chinesas , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-sis , Camundongos Endogâmicos C57BL , Medicamentos de Ervas Chinesas/uso terapêutico , Transdução de Sinais , Isquemia/tratamento farmacológico , Membro Posterior/metabolismo , RNA Mensageiro/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
5.
Am J Transl Res ; 16(1): 39-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322549

RESUMO

OBJECTIVES: In diabetes, chronic hyperglycemia increases the overactivation of oxidative phosphorylation of mitochondria in the liver, resulting in oxidative stress (OS) damage. The Nrf2 signaling pathway plays a key role in preventing hepatic oxidative injury and inflammation. This study aims to investigate the therapeutic effect and mechanism of Modified Buyang Huanwu Decoction (mBYHWD) on diabetic liver injury (DLI) by regulating oxidative stress mediated by Nrf2 signaling pathway. METHODS: The experiment was divided into three groups: a control group (db/m mice, Con), a diabetes model group (db/db mice, Mod), and a traditional Chinese medicine group (db/m mice, mBYHWD). Post-treatment, serum from each group was analyzed to assess changes of blood glucose, blood lipid, and liver function. These results were combined with data mining to explore the possible pathogenesis of DLI. Liver tissues were collected to observe the pathological morphology and detect related proteins. RESULTS: The results demonstrated that mBYHWD significantly reduced blood lipids and improved liver function following diabetic liver injury. The histopathological results demonstrated that mBYHWD could significantly ameliorate damage of diabetic hepatocytes. Protein analysis revealed that mBYHWD treatment significantly increased the expression of antioxidant proteins in diabetic liver tissue and inhibited inflammation. CONCLUSIONS: The therapeutic mechanism of mBYHWD on DLI may involve activating the Nrf2 signaling pathway to improve oxidative stress, inhibit inflammation, and reduce liver tissue fibrosis.

6.
Chem Biol Drug Des ; 103(1): e14447, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230788

RESUMO

Atherosclerosis (AS) is one of the main risk factors of ischemic cardiovascular and cerebrovascular diseases. Buyang Huanwu decoction (BYHWT) is a classic Chinese medicine prescription that is used for treating AS. However, the underlying pharmacological mechanism remains unclear. This study aims to clarify the molecular mechanism of BYHWT in treatment of AS through network pharmacology and in vitro experiments. Molecular structure information and targets of core components of BYHWT were obtained from PubChem and UniProtKB databases. Genes involved in AS were obtained from DisGeNet, GeneCards and OMIM databases. The core targets of BYHWT in AS treatment were identified by protein-protein interaction (PPI) network analysis with STRING platform, and analyzed by gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway enrichment analysis. Molecular docking was used to verify the binding affinity between the core targets and the bioactive ingredients. HUVEC viability, inflammatory response and mRNA expression levels of core target genes were evaluated by cell counting kit 8 assay, enzyme-linked immunosorbent assay (ELISA) and qRT-PCR. A total of 60 candidate compounds and 325 predicted target genes were screened. PPI network analysis suggested that TP53, SRC, STAT3, and AKT1 may be the core targets. BYHWT in AS treatment was associated with 46 signaling pathways. GA120, baicalein, and 3,9-di-o-methylnissolin had good binding affinity with core target proteins. Baicalein treatment could significantly promoted the viability and repress the inflammatory response of HUVEC cells stimulated by ox-LDL. In addition, Baicalein can regulate the expression of core targets including AKT1, MAPK1, PIK3CA, JUN, TP53, SRC, EGFR, and ESR1. In conclusion, BYHWT and its main bioactive component baicalein, inhibit inflammatory response and modulate multiple downstream genes of endothelial cells, and show good potential to block the progression of AS and cardiovascular/cerebrovascular diseases.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Transtornos Cerebrovasculares , Medicamentos de Ervas Chinesas , Humanos , Farmacologia em Rede , Células Endoteliais , Simulação de Acoplamento Molecular , Aterosclerose/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
7.
J Ethnopharmacol ; 325: 117766, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38266949

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A classic stroke formula is Buyang Huanwu Decoction (BYHWD), Glycosides are the pharmacological components found in BYHWD, which are utilized for the prevention and management of cerebral ischemia-reperfusion (CIR), as demonstrated in a previous study. Its neuroprotective properties are closely related to its ability to modulate inflammation, but its mechanism is as yet unclear. AIM OF THE STUDY: A research was undertaken to investigate the impact of glycosides on the inflammation of CIR through the PTEN-induced putative kinase-1 (PINK1)/Parkin mitophagy pathway. MATERIALS AND METHODS: Analyzing glycosides containing serum components was performed with ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Glycosides were applied to rat of Middle cerebral artery occlusion/reperfusion (MCAO/R) model and primary neural cell of Oxygen glucose deprivation/reperfusion (OGD/R) model. The neuroprotective effect and the regulation of mitophagy of glycosides were evaluated through neural damage and PINK1/Parkin mitophagy activation. Moreover, the assessment of the relationship between glycosides regulation of mitophagy and its anti-inflammatory effects subsequent to mitophagy blockade was conducted by examining neural damage, PINK1/Parkin mitophagy activation, and levels of pyroptosis. RESULTS: (1) It was observed that the administration of glycosides resulted in a decrease in neurological function scores, a reduction in cerebral infarction volume, an increase in mitochondrial autophagosome, and the maintenance of a high expression status of light chain 3 (LC3) II/LC3Ⅰ protein. Additionally, there was a significant inhibition of p62 protein expression and an enhancement of PINK1 and Parkin protein expression. Furthermore, it was found that the effect of glycosides at a dosage of 0.128 g · kg-1 was significantly superior to that of glycosides at a dosage of 0.064 g · kg-1. Notably, the neuroprotective effect and inhibition of pyroptosis protein of glycosides at a dosage of 0.128 g · kg-1 were attenuated when mitochondrial autophagy was blocked. (2) Glycosides repaired cellular morphological damage, enhanced cell survival, and reduced Lactate dehydrogenase (LDH) leakage, with glycosides (2.36 µg·mL-1 and 4.72 µg·mL-1) neuronal protection being the strongest. Glycosides (4.72 µg·mL-1) maintained LC3II/LC3Ⅰ protein high expression state, inhibited p62 protein expression, and promoted PINK1 and Parkin protein expression, which was stronger than glycosides (2.36 µg·mL-1). The blockade of mitophagy resulted in a reduction of neuroprotection and inhibition of pyroptosis protein exerted by glycosides. CONCLUSION: Glycosides demonstrate the ability to hinder inflammation through the activation of the PINK1/Parkin mitophagy pathway, thereby leading to subsequent neuroprotective effects on CIR.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Fármacos Neuroprotetores , Ratos , Animais , Mitofagia , Glicosídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Proteínas Quinases/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Reperfusão , Inflamação/tratamento farmacológico
8.
J Ethnopharmacol ; 323: 117620, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38141792

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Buyang Huanwu Decoction (BYHWD), one of the most commonly utilized traditional Chinese medicine prescription for treatment of cerebral ischemic stroke. However, the understanding of BYHWD on neurovascular repair following cerebral ischemia is so far limited. AIM OF THE STUDY: This research investigated the influence of BYHWD on neurovascular remodeling by magnetic resonance imaging (MRI) technology and revealed the potential neurovascular repair mechanism underlying post-treatment with BYHWD after ischemic stroke. MATERIALS AND METHODS: Male Sprague-Dawley rats were utilized as an ischemic stroke model by permanent occlusion of the middle cerebral artery (MCAO). BYHWD was intragastrically administrated once daily for 30 days straight. Multimodal MRI was performed to detect brain tissue injuries, axonal microstructural damages, cerebral blood flow and intracranial vessels on the 30th day after BYHWD treatment. Proangiogenic factors, axonal/synaptic plasticity-related factors, energy transporters and adenosine monophosphate-activated protein kinase (AMPK) signal pathway were evaluated using western blot. Double immunofluorescent staining and western blot were applied to evaluate astrocytes and microglia polarization. RESULTS: Administration of BYHWD significantly alleviated infarct volume and brain tissue injuries and ameliorated microstructural damages, accompanied with improved axonal/synaptic plasticity-related factors, axonal growth guidance factors and decreased axonal growth inhibitors. Meanwhile, BYHWD remarkably improved cerebral blood flow, cerebral vascular signal and promoted the expression of proangiogenic factors. Particularly, treatment with BYHWD obviously suppressed astrocytes A1 and microglia M1 polarization accompanied with promoted astrocyte A2 and microglia M2 polarization. Furthermore, BYHWD effectively improved energy transporters. Especially, BYHWD markedly increased expression of phosphorylated AMPK, cyclic AMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) accompanied by inactivation of the NF-κB. CONCLUSION: Taken together, these findings identified that the beneficial roles of BYHWD on neurovascular remodeling were related to AMPK pathways -mediated energy transporters and NFκB/CREB pathways.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Astrócitos , AVC Isquêmico/tratamento farmacológico , Microglia , Proteínas Quinases Ativadas por AMP , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
9.
J Ethnopharmacol ; 319(Pt 3): 117218, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37806535

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Promoting the recovery of cerebral blood circulation after cerebral infarction (CI) is an important intervention. Buyang Huanwu decoction (BHD) is a classic prescription for treating CI that promotes angiogenesis. Cytoplasmic glycolysis ischaemic-region cells after CI may be highly activated to maintain metabolic activity under hypoxia. From the perspective of long-term maintenance of glycolytic metabolism in the ischaemic area after CI, it may be beneficial to promote angiogenesis and maintain glial cell activation and neuronal survival. In this context, the regulatory relationship of lncRNAs and miRNAs with mRNAs is worthy of attention. Mining the competitive binding relationships among RNAs will aid in the screening of key gene targets post-CI. In this study, network pharmacology and bioinformatics were used to construct a ceRNA network, screen key targets, and explore the effect of glycolysis on angiogenesis during BHD-mediated CI regulation. AIM OF THE STUDY: This study aimed to explore the effect of BHD on angiogenesis after glycolysis regulation in CI. MATERIALS AND METHODS: According to the 21 active BHD ingredients we identified by our research team, we conducted network pharmacology. BHD targets that can regulate glycolysis and angiogenesis after CI were screened from the GeneCards, CTD and OMIM databases. We retrieved CI-related datasets from the GEO database and screened for differentially expressed lncRNAs and miRNAs. LncRNA‒miRNA-mRNA/TF targeting relationships were screened and organized with the miRcode, miRDB, TargetScan, miRWalk, and TransmiR v2.0 databases. Cytoscape was used to construct an lncRNA‒miRNA-mRNA/TF ceRNA network. Through BioGPS, key mRNAs/TFs in the network were screened for enrichment analysis. Animal experiments were then conducted to validate some key mRNAs/TFs and enriched signalling pathways. RESULTS: PFKFB3 and other genes may help regulate glycolysis and angiogenesis through AMPK and other signalling pathways. The anti-CI effect of BHD may involve maintaining activation of genes such as AMPK and PFKFB3 in the ischaemic cortex, maintaining moderate glycolysis levels in brain tissue, and promoting angiogenesis. CONCLUSION: BHD can regulate glycolysis and promote angiogenesis after CI through multiple pathways and targets, in which AMPK signalling pathway activation may be important.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , Proteínas Quinases Ativadas por AMP , Farmacologia em Rede , Infarto Cerebral , Biologia Computacional , RNA Mensageiro , MicroRNAs/genética
10.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5345-5355, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114124

RESUMO

The study investigated the effect of Buyang Huanwu Decoction(BYHWD) on endogenous biomarkers in the urine of rats with chronic inflammation induced by lipopolysaccharide(LPS) using ultra-high performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS), aiming to elucidate the molecular mechanism underlying the therapeutic effect of BYHWD on chronic inflammation from a metabolomics perspective. Male SD rats were randomly divided into a normal group, a model group, and low-, medium-, and high-dose BYHWD groups(7.5, 15, and 30 g·kg~(-1)). The model group and BYHWD groups received tail intravenous injection of LPS(200 µg·kg~(-1)) on the first day of each week, followed by oral administration of BYHWD once a day for four consecutive weeks. Urine samples were collected at the end of the administration period, and UPLC-Q-TOF-MS was used to analyze the metabolic profiles of the rat urine in each group. Multivariate statistical analysis methods such as principal component analysis(PCA), partial least squares-discriminant analysis(PLS-DA), and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to analyze the effect of BYHWD on endogenous metabolites. One-way ANOVA and variable importance for the projection(VIP) were used to screen for potential biomarkers related to chronic inflammation. The identified biomarkers were subjected to pathway and enrichment analysis using MetaboAnalyst 5.0. A total of 25 potential biomarkers were screened and identified in the rat urine in this experiment. Compared with the normal group, the model group showed significant increases in the levels of 14 substances(P<0.05) and significant decreases in the levels of 11 substances(P<0.05). BYHWD was able to effectively reverse the trend of most endogenous biomarkers. Compared with the model group, BYHWD significantly down-regulated 13 biomarkers(P<0.05) and up-regulated 10 biomarkers(P<0.05). The metabolic products were mainly related to the biosynthesis of pantothenic acid and coenzyme A, tryptophan metabolism, retinol metabolism, and propionate metabolism. BYHWD has therapeutic effect on chronic inflammation induced by LPS, which may be related to its ability to improve the levels of endogenous metabolites, enhance the body's anti-inflammatory and antioxidant capabilities, and restore normal metabolic activity.


Assuntos
Lipopolissacarídeos , Metabolômica , Ratos , Masculino , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ratos Sprague-Dawley , Metabolômica/métodos , Inflamação/tratamento farmacológico , Biomarcadores/urina
11.
Chin Med ; 18(1): 150, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957754

RESUMO

BACKGROUND: In this study, we aimed to combine transcriptomic and network pharmacology to explore the crucial mRNAs and specific regulatory molecules of Buyang Huanwu Decoction (BYHWD) in intracerebral hemorrhage (ICH) treatment. METHODS: C57BL/6 mice were randomly divided into three groups: sham, ICH, and BYHWD. BYHWD (43.29 g/kg) was administered once a day for 7 days. An equal volume of double-distilled water was used as a control. Behavioural and histopathological experiments were conducted to confirm the neuroprotective effects of BYHWD. Brain tissues were collected for transcriptomic detection. Bioinformatics analysis were performed to illustrate the target gene functions. Network pharmacology was used to predict potential targets for BYHWD. Next, transcriptomic assays were combined with network pharmacology to identify the potential differentially expressed mRNAs. Immunofluorescence staining, real-time polymerase chain reaction, western blotting, and transmission electron microscopy were performed to elucidate the underlying mechanisms. RESULTS: BYHWD intervention in ICH reduced neurological deficits. Network pharmacology analysis identified 203 potential therapeutic targets for ICH, whereas transcriptomic assay revealed 109 differentially expressed mRNAs post-ICH. Among these, cathepsin B, ATP binding cassette subfamily B member 1, toll-like receptor 4, chemokine (C-C motif) ligand 12, and baculoviral IAP repeat-containing 5 were identified as potential target mRNAs through the integration of transcriptomics and network pharmacology approaches. Bioinformatics analysis suggested that the beneficial effects of BYHWD in ICH may be associated with apoptosis, animal autophagy signal pathways, and PI3K-Akt and mTOR biological processes. Furthermore, BYHWD intervention decreased Ctsb expression levels and increased autophagy levels in ICH. CONCLUSIONS: Animal experiments in combination with bioinformatics analysis confirmed that BYHWD plays a neuroprotective role in ICH by regulating Ctsb to enhance autophagy.

12.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4156-4163, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802784

RESUMO

This study explored the effects of Buyang Huanwu Decoction(BYHWD) on platelet activation and differential gene expression after acute myocardial infarction(AMI). SD rats were randomly divided into a sham-operated group, a model group, a positive drug(aspirin) group, and a BYHWD group. Pre-treatment was conducted for 14 days with a daily oral dose of 1.6 g·kg~(-1) BYHWD and 0.1 g·kg~(-1) aspirin. The AMI model was established using the high ligation of the left anterior descending coronary artery method. The detection indicators included myocardial infarct size, heart function, myocardial tissue pathology, peripheral blood flow perfusion, platelet aggregation rate, platelet membrane glycoprotein CD62p expression, platelet transcriptomics, and differential gene expression. The results showed that compared with the sham-operated group, the model group showed reduced ejection fraction and cardiac output, decreased peripheral blood flow, and increased platelet aggregation rate and CD62p expression, and activated platelets. At the same time, TXB_2 content increased and 6-keto-PGF1α content decreased in serum. Compared with the model group, BYHWD increased ejection fraction and cardiac output, improved blood circulation in the foot and tail regions and cardiomyocytes arrangement, reduced myocardial infarct size and inflammatory infiltration, down-regulated platelet aggregation rate and CD62p expression, reduced serum TXB_2 content, and increased 6-keto-PGF1α content. Platelet transcriptome sequencing results revealed that BYHWD regulated mTOR-autophagy pathway-related genes in platelets. The differential gene expression levels were detected using real-time quantitative PCR. BYHWD up-regulated mTOR, down-regulated autophagy-related FUNDC1 and PINK genes, and up-regulated p62 gene expression. The results demonstrated that BYHWD could regulate platelet activation, improve blood circulation, and protect ischemic myocardium in AMI rats, and its mechanism is related to the regulation of the mTOR-autophagy pathway in platelets.


Assuntos
Medicamentos de Ervas Chinesas , Infarto do Miocárdio , Ratos , Animais , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Aspirina/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais
13.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4164-4172, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802785

RESUMO

The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.


Assuntos
Aterosclerose , NF-kappa B , Camundongos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , LDL-Colesterol , Hiperplasia , Camundongos Endogâmicos C57BL , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/uso terapêutico , RNA Mensageiro
14.
J Tradit Chin Med ; 43(5): 841-850, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37679971

RESUMO

OBJECTIVE: To evaluate the efficacy and safety of Buyang Huanwu decoction (BYHWD) in treating diabetic peripheral neuropathy (DPN). METHODS: Eight electronic databases, including China National Knowledge Infrastructure Database, Wanfang Database, China Science and Technology Journal Database, Chinese Biomedical Literature Database, Cochrane Library, Embase, Web of Science, and PubMed, were searched for randomized controlled trials (RCTs) of BYHWD to treat DPN. We identified all RCTs related to BYHWD and those on the treatment of DPN with the combination of mecobalamin. RevMan software was used for the statistical analysis. RESULTS: Twentyone RCTs with a total of 1945 patients were included. The methodological quality of the literature included was low. Metaanalysis showed that the efficacy of the treatment group was significantly better than that of the control group in the treatment of DPN with BYHWD [risk ratio () = 0.33, 95% (0.27, 0.40), 11.25, 0.000 01]. The median nerve of median motor nerve conduction velocity (MNCV) [mean difference () = 4.16, 95% (1.35, 6.98)] and median sensory NCV (SNCV) [(= 3.28, 95% (2.35, 4.22)] were improved in the treatment group. The MNCV in the common peroneal nerve [(= 1.63, 95% (0.39, 2.87)] and SNCV [(= 4.56, 95% (3.16, 5.97)] were significantly higher than those in the control group ( 0.01). Plasma viscosity [(= -0.15, 95% (-0.20, -0.09), 5.17, 0.01)], whole blood high shear [(= 0.83, 95% (1.56, -0.11), 2.26, 0.02)]and whole blood low shear [(= 1.61, 95% (2.28, 0.94), 4.68, 0.01)] decreased significantly after treatment. There was no significant difference in fasting blood glucose [(= 0.42, 95% ( 0.89, 0.05), 1.76, 0.08)] between the treatment and control groups; postprandial blood glucose [(= 0.62, 95% ( 1.19, 0.05), 2.12, 0.03)] decreased significantly. No significant difference was found in the blood lipid levels between the treatment and control groups, including triglycerides [(= 0.21, 95% (0.52, 0.10), 1.34, 0.18)] and cholesterol [(= 0.13, 95% ( 0.27, 0.00), 1.92, 0.06)]. Of the 21 RCTs, only five reported adverse reactions, and four studies reported the length of followup. No serious adverse events were reported. None of the studies reported the quality of life and economic conditions. CONCLUSIONS: Our study suggests that BYHWD has a significant therapeutic effect on DPN. Highquality, largescale RCTs are needed to provide more reliable evidence.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Medicamentos de Ervas Chinesas , Humanos , Glicemia , Neuropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/efeitos adversos , China
15.
Phytomedicine ; 120: 155001, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619321

RESUMO

BACKGROUND: Glycosides are the pharmacodynamic substances of Buyang Huanwu Decoction (BYHWD) and they exert a protective effect in the brain by inhibiting neuronal pyroptosis of cerebral ischemia-reperfusion (CIR). However, the mechanism by which glycosides regulate neuronal pyroptosis of CIR is still unclear. PURPOSE: A significant part of this study aimed to demonstrate whether glycosides have an anti-pyroptotic effect on CIR by nuclear factor erythroid 2-related factor (Nrf2)-mediated antioxidative mechanism. METHODS: Rats were used in vivo models of middle cerebral artery occlusion and reperfusion (MCAO/R). Neuroprotective effect of glycosides after Nrf2 inhibiting was observed by nerve function score, Nissl staining, Nrf2 fluorescence staining and pyroptotic proteins detection. SH-SY5Y cells were used in vitro models of oxygen-glucose deprivation/reperfusion (OGD/R). Glycosides was evaluated for their effects by measuring cell morphology, survival rate, lactate dehydrogenase (LDH) rate and expression of pyroptotic proteins. Nrf2 si-RNA 54-1 interference with lentivirus was used to create silenced Nrf2 SH-SY5Y cells (si-Nrf2-SH-SY5Y). Glycosides were evaluated on si-Con-SH-SY5Y and si-Nrf2-SH-SY5Y cells based on the expression of Nrf2 signaling pathway, pyroptotic proteins and cell damage manifestation. RESULTS: In vivo, glycosides significantly promoted the fluorescence level of nuclear Nrf2, added more Nissl bodies, reduced neurological function scores and inhibited the pyroptotic proteins level. In vitro, glycosides significantly repaired the morphological damage of cells, promoted the survival rate, reduced the LDH rate, inhibited the pyroptosis. Moreover, antioxidant activity of glycosides was enhanced via Nrf2 activation. Both Nrf2 blocking in vivo and Nrf2 silencing in vitro significantly weakened the pyroptosis inhibitory and neuroprotective effects of glycosides. CONCLUSION: These results suggested for the first time that glycosides inhibited neuronal pyroptosis by regulating the Nrf2-mediated antioxidant stress pathway, thereby exerting brain protection of CIR. As a result of this study, This study improved understanding of the pharmacodynamics and mechanism of BYHWD, as well as providing a Traditional Chinese Medicine (TCM) treatment strategy for CIR .


Assuntos
Isquemia Encefálica , Neuroblastoma , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Piroptose , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Neuroblastoma/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Transdução de Sinais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Reperfusão
16.
Front Pharmacol ; 14: 1137609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234709

RESUMO

Introduction: Mitochondrial quality control (MQC) is an important mechanism of neural repair after cerebral ischemia (CI). Recent studies have shown that caveolin-1 (Cav-1) is an important signaling molecule in the process of CI injury, but its mechanism of regulating MQC after CI is still unclear. Buyang Huanwu Decoction (BHD) is a classic traditional Chinese medicine formula that is often used to treat CI. Unfortunately, its mechanism of action is still obscure. Methods: In this study, we tested the hypothesis that BHD can regulate MQC through Cav-1 and exert an anti-cerebral ischemia injury effect. We used Cav-1 knockout mice and their homologous wild-type mice, replicated middle cerebral artery occlusion (MCAO) model and BHD intervention. Neurobehavioral scores and pathological detection were used to evaluate neurological function and neuron damage, transmission electron microscopy and enzymology detection of mitochondrial damage. Finally, western blot and RT-qPCR expression of MQC-related molecules were tested. Results: After CI, mice showed neurologic impairment, neuronal damage, and significant destruction of mitochondrial morphology and function, and MQC was imbalanced. Cav-1 deletion aggravated the damage to neurological function, neurons, mitochondrial morphology and mitochondrial function after CI, aggravated the imbalance of mitochondrial dynamics, and inhibited mitophagy and biosynthesis. BHD can maintain MQC homeostasis after CI through Cav-1 and improve CI injury. Discussion: Cav-1 can affect CI injury by regulating MQC, and this mechanism may be another target of BHD for anti-cerebral ischemia injury.

17.
Am J Transl Res ; 15(4): 2389-2406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193167

RESUMO

OBJECTIVE: To investigate the therapeutic effect of Buyang huanwu decoction (BYHWD) on sepsis-induced myocardial injury (SIMI) and explore the mechanism by which BYHWD mitigates SIMI. METHODS: The Lipopolysaccharide (LPS)-induced SIMI mouse model was established to detect the effect of BYHWD-low (1 mg/kg), BYHWD-middle (5 mg/kg), and BYWHD-high (20 mg/kg) on SIMI. The survival of these BYHWD-treated septic mice was investigated. The histology of myocardial tissues was determined by hematoxylin and eosin (H&E) staining. The apoptotic index and inflamed microenvironment of myocardial tissues were assessed by immunofluorescent staining (IF) and flow cytometry analysis. Liquid chromatography-mass spectrometry (LC-MS/MS) was employed to determine the key chemical components in the serum of BYHWD-loaded septic mice. Immunoblotting assay was utilized to detect NF-κB and TGF-ß signaling activity, and M1/M2-macrophage markers using RAW264.7 cells. RESULTS: The high dosage of BYHWD (BYHWD-high, 20 mg/Kg) significantly attenuated SIMI and improved the survival of septic mice. The BYHWD-high solution markedly reduced myocardial cell apoptosis and mitigated the inflamed microenvironment by suppressing CD45+ immune cell infiltration. Importantly, BYHWD decreased macrophage accumulation and promoted an M2-macrophage polarization. Paeoniflorin (PF) and calycosin-7-O-ß-glucoside (CBG) were identified as the key molecules in BYWHD with therapeutic effect. PF (10 µM) and CBG (1 µM) inhibited NF-κB signaling, meanwhile they upregulated the TGF-ß pathway, thereby facilitating an M2-macrophage phenotypic transition in RAW264.7 cells. CONCLUSIONS: BYHWD, with two effective components PF and CBG, can mitigate SIMI by suppressing the inflamed myocardial microenvironment and skewing an immunosuppressive M2-macrophage phenotype.

18.
J Ethnopharmacol ; 312: 116471, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37030556

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ischemic stroke is a common and frequent clinical disease. Recent studies have demonstrated that sphingolipid plays an important role in the pathological process of ischemic stroke. PI3K-Akt is a classic protective signaling pathway of cerebral ischemic injury. After acting on the S1P receptor, S1P can activate the downstream PI3K/Akt signaling pathway and play an anti-cerebral ischemia role. Buyang Huanwu Decoction (BHD) is a traditional Chinese medicine formula used to treat ischemic stroke. However, the mechanisms of BHD on ischemic stroke remain unclear based on S1P/S1PR1/PI3K/Akt signaling pathway. AIM OF THE STUDY: The present study is intended to investigate the action mechanism of BHD on ischemic stroke based on the S1P/S1PR1/PI3K/Akt signaling pathway from multiple perspectives. MATERIALS AND METHODS: The BHD lyophilized product was prepared by vacuum freeze-drying method, of which the chemical composition was determined by UPLC-Q-TOF/MS. The mouse permanent middle cerebral artery occlusion (pMCAO) model was established by the suture-occluded method. Male KM mice were randomly divided into seven groups: sham group, model group, FTY720 (positive control) group, BHD group, BHD + W146 (selective S1PR1 inhibitor) group, SEW2871 (selective S1PR1 agonist) group, and Calycosin group. Each group was administered continuously for 14 days and evaluated with modified neurological severity score (mNSS) and cerebral infarct volume on the 1st, 4th, 7th, and 14th days. The SphK1, SphK2, S1PR1, PI3K, Akt, and p-Akt protein in the prefrontal lobe, hippocampus, and striatum was quantified by Western blot and immunohistochemical (IHC) experiment respectively. The qRT-PCR method was employed to evaluate SphK1, SphK2, and S1PR1 mRNA expression in the above tissue. RESULTS: BHD and Calycosin both effectively improved mNSS scores with smaller infarct volumes. The SphK1 level in the prefrontal lobe, hippocampus, and striatum of mice in the BHD group was significantly lower, and SphK2, PI3K, and p-Akt in the hippocampus and striatum were significantly higher than those in the model group. BHD significantly decreased SphK1 mRNA expression in the prefrontal lobe, hippocampus, and striatum, and significantly up-regulated SphK2 mRNA and S1PR1 mRNA expression. Additionally, SphK1 protein expression levels of the prefrontal lobe, hippocampus, and striatum in the BHD group was significantly lower than model group, and SphK2, S1PR1, PI3K, Akt, and p-Akt protein expressions levels were increased obviously. Furthermore, SEW2871 can increase S1PR1 and Akt expression, and up-regulate SphK2 and S1PR1 mRNA expression. The effect of BHD on the expression of S1P/S1PR1/PI3K/Akt signaling pathway-related proteins and mRNA were weakened by BHD + W146. CONCLUSION: BHD and Calycosin significantly improved the symptoms of neurological deficits in pMCAO mice, reduced the cerebral infarction volume, up-regulated SphK2 and S1PR1 mRNA levels, enhanced SphK2, S1PR1, PI3K, Akt, p-Akt protein expression of the prefrontal lobe, hippocampus and striatum, and down-regulated SphK1 mRNA and protein expression, which may be helpful to clarify the mechanism of BHD through S1P/S1PR1/PI3K/Akt signaling pathway to protect against cerebral ischemic injury.


Assuntos
AVC Isquêmico , Camundongos , Masculino , Animais , AVC Isquêmico/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Infarto da Artéria Cerebral Média/tratamento farmacológico , RNA Mensageiro
19.
J Ethnopharmacol ; 312: 116432, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37003404

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese drugs, including Buyang Huanwu decoction (BYHWD), have been used in traditional practice to manage cardiovascular and cerebrovascular diseases. However, the effect and mechanisms by which this decoction alleviates diabetes-accelerated atherosclerosis are unknown and require exploration. AIM OF THE STUDY: This study aims to investigate the pharmacological effects of BYHWD on preventing diabetes-accelerated atherosclerosis, and elucidate its underlying mechanism. MATERIALS AND METHODS: Streptozotocin (STZ)-induced diabetic ApoE-/- mice were treated with BYHWD. Atherosclerotic aortic lesions, endothelial function, mitochondrial morphology, and mitochondrial dynamics-related proteins were evaluated in isolated aortas. High glucose-exposed human umbilical endothelial cells (HUVECs) were treated with BYHWD and its components. AMPK siRNA transfection, Drp1 molecular docking, Drp1 enzyme activity measurement, and so on were used to explore and verify the mechanism. RESULT: BYHWD treatment inhibited the worsening of diabetes-accelerated atherosclerosis by lessening atherosclerotic lesions in diabetic ApoE-/- mice, by impeding endothelial dysfunction under diabetic conditions, and by inhibiting mitochondrial fragmentation by lowering protein expression levels of Drp1 and mitochondrial fission-1 protein (Fis1) in diabetic aortic endothelium. In high glucose-exposed HUVECs, BYHWD treatment also downgraded reactive oxygen species, promoted nitric oxide levels, and abated mitochondrial fission by reducing protein expression levels of Drp1 and fis1, but not mitofusin-1 and optic atrophy-1. Interestingly, we found that BYHWD's protective effect against mitochondrial fission is mediated by AMPK activation-dependent reduction of Drp1 levels. The main serum chemical components of BYHWD, ferulic acid, and calycosin-7-glucoside, can reduce the expression of Drp1 by regulating AMPK, and can inhibit the activity of GTPase of Drp1. CONCLUSION: The above findings support the conclusion that BYHWD suppresses diabetes-accelerated atherosclerosis by reducing mitochondrial fission through modulation of the AMPK/Drp1 pathway.


Assuntos
Aterosclerose , Diabetes Mellitus , Medicamentos de Ervas Chinesas , Camundongos , Humanos , Animais , Proteínas Quinases Ativadas por AMP , Dinâmica Mitocondrial , Células Endoteliais , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Glucose/farmacologia , Apolipoproteínas E
20.
Front Cell Dev Biol ; 11: 1096329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936696

RESUMO

Introduction: The neurological impairment of survivors after ischemic stroke poses a serious risk to their quality of life and health. Effective therapeutic options are still lacking. Neural stem cells (NSCs) promote neurogenesis via secreted extracellular vesicles (NSC-EVs), which would be a potential therapeutic option, but the insufficient quantity of NSC-EVs in vivo restrains clinical application. Buyang Huanwu Decoction (BHD), a classic traditional Chinese medicine (TCM) decoction, is promising to alleviate neurological impairment after ischemic stroke. It was speculated that BHD might promote neurological recovery through the NSC-EVs. Methods: The medicated plasma of BHD (MP-BHD) was prepared to precondition NSCs and isolate EVs (BHD-NSC-EVs). Middle cerebral artery occlusion (MCAO) models and primary NSCs were administered to evaluate the therapeutic effect. Next-generation sequencing was performed to explore the mechanism. Results: The BHD-NSC-EVs more significantly accelerated neurological recovery after MCAO and promoted NSCs proliferation and differentiation than BHD and NSC-EVs alone. MP-BHD enhanced the largescale generation of BHD-NSC-EVs, which encapsulated functional miRNA and may play critical roles in neurogenesis. Discussion: In replacing BHD or NSCs, the preconditioned NSC-EVs present a more efficient therapeutic strategy for ischemic stroke. Based on the clinical efficacy of TCM, the preconditioning of NSC-derived EVs via the MP of TCM herbs would presents a newly promising therapeutic strategy for neurological diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...